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Lecture 7: September 18

Ahlfors’ lemma. We saw in Lecture 5 that the unit disk is an example of a period
domain. Today, we will show that, at least as far as period mappings are concerned,
arbitrary period domains behave much like bounded domains in Cn.

Let ∆R =
{
t ∈ C

∣∣ |t| < R
}

denote the open disk of radius R > 0. Recall from
last time that the Poincaré metric h∆R

is given by the formula

h∆R

(
∂

∂t
,
∂

∂t

)
=

2R2

(R2 − |t|2)2
,

The Poincaré metric has constant sectional curvature −1, which is to say that

∂

∂t

∂

∂t̄

(
log

2R2

(R2 − |t|2)2

)
= − 2R2

(R2 − |t|2)2
.

The following important result, which is a generalization of the Schwarz-Pick lemma
from complex analysis, is known as Ahlfors’ lemma.

Theorem 7.1. Let M be a complex manifold with a hermitian metric hM , and let
f : ∆R →M be a holomorphic mapping. Suppose that the function

ϕ = hM

(
f∗
∂

∂t
, f∗

∂

∂t

)
∈ C∞(∆R)

satisfies the inequality ∂
∂t

∂
∂t̄ logϕ ≥ ϕ at all points of ∆R where ϕ is nonzero. Then

ϕ ≤ 2R2

(R2 − |t|2)2

on the entire disk ∆R.

Proof. We are going to prove the inequality

ϕ ≤ 2r2

(r2 − |t|2)2

for every r < R; this is enough, because we can then let r → R to get the result.
Define the auxiliary function u ∈ C∞(∆r) by the formula

ϕ = u · 2r2

(r2 − |t|2)2
.

We observe that u goes to zero near the boundary of ∆r, because ϕ is bounded on
∆r, whereas 2r2/(r2 − |t|2)2 goes to infinity near the boundary. Therefore u must
have a maximum at some interior point t0 ∈ ∆r.

If u(t0) = 0, then both u and ϕ are identically zero, and the inequality is trivally
satisfied. (This happens when the mapping f is constant.) We may therefore
assume from now on that u(t0) > 0, hence also ϕ(t0) > 0. Since the function log u
has a maximum at the point t0, we get

0 ≥ 1

4

(
∂

∂x

∂

∂x
log u+

∂

∂y

∂

∂y
log u

)
=

∂

∂t

∂

∂t̄
log u

for t = t0, where t = x+ iy. It follows that

0 ≥ ∂

∂t

∂

∂t̄
log u =

∂

∂t

∂

∂t̄
logϕ− ∂

∂t

∂

∂t̄

(
log

2r2

(r2 − |t|2)2

)
≥ ϕ− 2r2

(r2 − |t|2)2

for t = t0, which says exactly that u(t0) ≤ 1. But u had a maximum at t0, and
therefore u ≤ 1 on the entire disk ∆r. �
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Ahlfors’ lemma says that the length of the tangent vector f∗ ∂∂t , computed with

respect to the hermitian metric on M , is at most the length of ∂
∂t , computed with

respect to the Poincaré metric. We can integrate this infinitesimal result along
curves to obtain the following global version.

Corollary 7.2. Under the same assumptions as in Theorem 7.1, we have

dM
(
f(t1), f(t2)

)
≤ d∆R

(t1, t2)

for every pair of points t1, t2 ∈ ∆R.

In other words, the length of the shortest curve connecting the two image points
f(t1) and f(t2), computed using the metric hM , is at most the distance of t1 and
t2 with respect to the Poincaré metric. In that case, one says that the mapping f
is “distance decreasing”.

Period mappings are distance decreasing. We are now going to prove that
period mappings have this property. Because of Ahlfors’ lemma, this is a local
problem. We will therefore consider the period mapping

Φ: ∆R → D

of a polarized variation of Hodge structure of weight n on a small disk ∆R. As
usual, we denote the holomorphic vector bundle by V , the connection by ∇, and
the Hodge bundles by F pV . Let V be the space of ∇-flat sections of V on ∆R,
and h : V ⊗C V → C the hermitian pairing induced by the polarization on V . The
Hodge bundles F pV are then subbundles of the trivial bundle O∆R

⊗C V . The
points of the period domain D then correspond to polarized Hodge structures of
weight n on V that are polarized by h. We shall use the point o = Φ(0) as our
reference point.

Let hD be the GR-invariant hermitian metric on D, constructed in Lecture 6.
As in Ahlfors’ lemma, we introduce the function

ϕ = hD

(
Φ∗

∂

∂t
,Φ∗

∂

∂t

)
∈ C∞(∆r).

Here is the key result.

Theorem 7.3. There is a constant ε > 0, depending only on D, such that

∂

∂t

∂

∂t̄
logϕ ≥ ε · ϕ.

In fact, we can always arrange that ε = 1, by rescaling the polarization on V by
a factor of ε−1. (This changes the hermitian metric hD, and hence the function ϕ,
by ε−1, and therefore removes the ε from the right-hand side of the inequality.)

I am going to divide the proof of the theorem into six steps.

Step 1. Since the metric hD is GR-invariant, all points of D are equivalent, and so it
suffices to prove the inequality in the theorem at t = 0. Doing out the derivatives,
we statement we need to prove is that

(7.4) ϕ(0)
∂2ϕ

∂t∂t̄
(0)−

∣∣∣∂ϕ
∂t

(0)
∣∣∣
2

≥ ε · ϕ(0)3.

To check this, we only need the first few terms in the Taylor expansion of ϕ; to be
precise, the coefficients at 1, t, t̄, and |t|2. In fact, all the functions that appear are
real-analytic (because the period mapping Φ is holomorphic). We will use this idea
in a few places, to simplify the computation.
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Step 2. To do the computation, we need a good presentation for the period map-
ping. The reference Hodge structure Fo induces a Hodge structure of weight 0 on
End(V ), polarized by the pairing tr(AB∗). To keep the notation simple, I will drop
the subscript o when refering to this Hodge structure. We have

TΦ(0)D ∼= End(V )/F 0 End(V ) ∼=
⊕

`≤−1

End(V )`,−`,

and so the holomorphic tangent space to Ď at the point Φ(0) is isomorphic to the
space on the right, which is a subspace of End(V ). The exponential mapping

exp: End(V )→ GL(V ), exp(A) = eA =

∞∑

n=0

An

n!
,

therefore restricts to a biholomorphic isomorphism between an open neighborhood
of the origin in

⊕
`≤−1 End(V )`,−` and an open neighborhood of the point Φ(0) ∈ Ď.

This means that on a sufficiently small neighborhood of the origin, we can write
the period mapping uniquely in the form

Φ(t) = eA(t) · Φ(0),

where the function

A : ∆r →
⊕

`≤−1

End(V )`,−`

is holomorphic and satisfies A(0) = 0 (and where r � R in general). In terms of
the Hodge filtrations, this says that

FΦ(t) = eA(t)Fo.

By construction, A decomposes into a finite sum

A = A−1 +A−2 + · · · ,
where each A` : ∆r → End(V )`,−` is again holomorphic and A`(0) = 0.

Step 3. We need to express the Griffiths transversality condition in terms of A(t).
For any v ∈ F po , the function eA(t)v is a holomorphic section of the Hodge bundle
F pV , and so its derivative

∇ ∂
∂t

(
eA(t)v

)
=

∂

∂t
eA(t)v

must be a section of F p−1V , hence take values in F p−1
Φ(t) = eA(t)F p−1

o . After moving

the exponential factor to the other side, we obtain

e−A(t) ∂

∂t
eA(t) ∈ F−1 End(V ).

When we expand the exponential series, all the terms that appear on the left-hand
side belong to the subalgebra

⊕
`≤−1 End(V )`,−`, which intersects F−1 End(V )

only in the subspace End(V )−1,1. The conclusion is that e−A(t) ∂
∂te

A(t) has to equal

its (−1, 1)-component, which is easily seen to be ∂
∂tA−1(t). Equivalently,

(7.5)
∂

∂t
eA(t) = eA(t) ∂A−1(t)

∂t
.

Since we only care about the first few terms in the Taylor expansion, let me write

A(t) ≡ Bt+
1

2
Ct2 mod t3,
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where B = B−1 +B−2 + · · · and C = C−1 +C−2 + · · · are the Hodge components
of the two operators B,C ∈ End(V ). We have

eA(t) ≡ id +Bt+
1

2
(B2 + C)t2 mod t3,

∂

∂t
eA(t) ≡ B + (B2 + C)t mod t2,

A−1(t) ≡ B−1t+
1

2
C−1t

2 mod t2,

∂A−1(t)

∂t
≡ B−1 + C−1t mod t2.

and so (7.5) amounts to the condition that

B + (B2 + C)t ≡ (id +Bt)(B−1 + C−1t) mod t2,

It follows that B = B−1 and C = C−1 both belong to the subspace End(V )−1,1.
This fact will be of crucial importance later on.

Step 4. Now we are ready to start deriving a formula for the function

ϕ = hD

(
Φ∗

∂

∂t
,Φ∗

∂

∂t

)
.

Under the isomorphism

TΦ(t)D ∼= End(V )/F 0
Φ(t) End(V ) ∼=

⊕

`≤−1

End(V )`,−`Φ(t) ,

the tangent vector Φ∗ ∂∂t is represented by the image of

(7.6)
∂

∂t
eA(t) · e−A(t) = eA(t) ∂A−1(t)

∂t
e−A(t)

in the quotient. Note that the right-hand side belongs to F−1
Φ(t) End(V ). In order

to compute ϕ(t), we therefore need to do the following: One, find the component
of (7.6) in the subspace

End(V )−1,1
Φ(t) = F−1

Φ(t) End(V ) ∩
(
F 0

Φ(t) End(V )
)⊥
,

where the ⊥ is taken with respect to the trace pairing on End(V ). Two, compute
its square norm with respect to the inner product on End(V ), which is minus the

trace pairing on the subspace End(V )−1,1
Φ(t) .

Here is a fairly simple way to do this. Recall that F 0
Φ(t) End(V ) is the space of

endomorphisms that preserve the Hodge filtration FΦ(t) = eA(t)Fo; hence

F 0
Φ(t) End(V ) = eA(t) · F 0 End(V ) · e−A(t).

We can therefore write the projection of (7.6) to the subspace F 0
Φ(t) End(V ) as

eA(t)P (t)e−A(t),

where P : ∆r → F 0 End(V ) is a real-analytic function; the fact thatB ∈ End(V )−1,1

says that P (0) = 0. Since the Hodge decomposition on End(V ) is orthogonal with
respect to the trace pairing, the projection is uniquely determined by the condition
that, for every S ∈ F 0 End(V ),

tr

(
eA(t) ∂A−1(t)

∂t
e−A(t)

(
eA(t)Se−A(t)

)∗)
= tr

(
eA(t)P (t)e−A(t)

(
eA(t)Se−A(t)

)∗)
.

Equivalently, for every S ∈ F 0 End(V ),

(7.7) tr

(
eA(t)∗eA(t)

(
∂A−1(t)

∂t
− P (t)

)
e−A(t)e−A(t)∗S∗

)
= 0.
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Once we have P (t), we can then compute the value of ϕ according to the formula

ϕ(t) = − tr

(
eA(t)

(
∂A−1(t)

∂t
− P (t)

)
e−A(t)

)(
eA(t)

(
∂A−1(t)

∂t
− P (t)

)
e−A(t)

)∗
,

where ∗ always means the adjoint with respect to the hermitian pairing h.

Step 5. Now let’s start doing the computation. Remember that we only care about
the four coefficients of ϕ at 1, t, t̄, and |t|2. We shall therefore write P (t) as

P (t) = Xt+ Y t̄+ Z|t|2 + · · · ,
where X,Y, Z ∈ F 0 End(V ). If we expand (7.7), but only keep those terms that
have a chance to contribute to the coefficients at t, t̄, and |t|2, we find that

tr
((

id +B∗t̄
)(

id +Bt
)(
B + Ct−Xt− Y t̄− Z|t|2

)(
id−Bt

)(
id−B∗t̄

)
S∗
)

= 0.

Now we simply look at the coefficients at t, t̄, and |t|2:

(1) From the coefficient at t, we get the condition that

tr(CS∗) = tr(XS∗).

The left-hand side is zero, because C ∈ End(V )−1,1, whereas S ∈ F 0 End(V ).
Therefore tr(XS∗) = 0 for every S ∈ F 0 End(V ), and since the trace pair-
ing is a polarization, we get X = 0.

(2) From the coefficient at t̄, we get the condition that

tr
(
(B∗B −BB∗)S∗

)
= tr

(
BS∗B∗ −BB∗S∗

)
= tr(Y S∗).

Since [B∗, B] = B∗B −BB∗ ∈ End(V )0,0, it follows that Y = [B∗, B].
(3) From the coefficient at |t|2, we get the condition that

tr
(
CS∗B∗ − CB∗S∗

)
= tr

(
ZS∗ +BY S∗ − Y BS∗

)
.

Looking at Hodge types, this simplifies to

tr
(
(B∗C − CB∗)S∗

)
= tr(ZS∗),

and therefore Z = [B∗, C].

Next, we write out the Taylor expansion of eA(t)
(
∂A−1(t)

∂t − P (t)
)
e−A(t). After

substituting X, Y , and Z, and collecting terms, this looks like

B + C t− Y t̄−
(

[B∗, C] + [B, Y ]
)
|t|2 + · · ·

where I have kept the notation Y = [B∗, B]. Now plug this into the formula for ϕ(t)
from above, and collect like terms. To make the result easier to read, let me again
write 〈 〉 for the positive definite inner product on End(V ) induced by the trace
pairing and the reference Hodge structure; so for example, ‖B‖2 = − tr(BB∗) since
B ∈ End(V )−1,1, but ‖Y ‖2 = tr(Y Y ∗) since Y ∈ End(V )0,0. With this notation,
the final result is this: the relevant terms in the Taylor expansion of ϕ(t) are

ϕ(t) = ‖B‖2 + 〈C,B〉t+ 〈B,C〉t̄+
(
‖C‖2 − ‖Y ‖2 − 2 Re

〈
[B, Y ], B

〉)
|t|2 + · · ·

Step 6. It remains to check the inequality in (7.4). The left-hand side is

‖B‖2
(
‖C‖2 − ‖Y ‖2 − 2 Re

〈
[B, Y ], B

〉)
−
∣∣〈C,B〉

∣∣2

≥ −‖B‖2
(
‖Y ‖2 + 2 Re

〈
[B, Y ], B

〉)
,

on account of the Cauchy-Schwarz inequality ‖B‖2‖C‖2 ≥ |〈C,B〉|2.

Lemma 7.8. We have
〈
[B, Y ], B

〉
= −‖Y ‖2.
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Proof. Recall that Y = [B∗, B] = B∗B −BB∗. Since B ∈ End(V )−1,1, we have
〈
[B, Y ], B

〉
= − tr

(
(BY − Y B)B∗

)
= tr(Y BB∗)− tr(Y B∗B) = − tr(Y 2).

But tr(Y 2) = ‖Y ‖2 because Y ∈ End(V )0,0. �
This reduces the proof of Theorem 7.3 to establishing an inequality of the form

‖[B∗, B]‖ ≥ ε‖B‖2,
where the constant ε > 0 only depends on the period domain D. The key point is
to prove that [B∗, B] = 0 implies that B = 0.

Lemma 7.9. There is a constant ε > 0 such that at all points z ∈ D, one has

‖[B∗, B]‖z ≥ ε‖B‖2z
for every B ∈ End(V )−1,1

z .

Proof. Let us first prove this at the reference point o. We observed earlier that
−B∗ is the adjoint of B ∈ End(V )−1,1

o with respect to the positive definite inner
product 〈v′, v′′〉o = h(Cov

′, v′′) on the vector space V . The condition [B∗, B] = 0
implies that B is a normal operator, hence diagonalizable. But B is also nilpotent,
and so B = 0. By compactness, this proves the desired inequality when z = o.

For general z ∈ D, we choose an element g ∈ GR such that z = g · o. Then

End(V )−1,1
z = gEnd(V )−1,1

o g−1,

and because conjugation by g transforms ‖‖o into ‖‖z, the inequality also holds at
the point z, with the same constant ε. �
First applications. In combination with Ahlfors’ lemma, Theorem 7.3 has the
following consequence.

Corollary 7.10. Let Φ: ∆R → D be the period mapping of a polarized variation
of Hodge structure. After rescaling the polarization, if necessary, one has

dD
(
Φ(t1),Φ(t2)

)
≤ d∆R

(t1, t2)

for every t1, t2 ∈ ∆R.

We can use this to show that – just like holomorphic functions from C into the
unit disk – every period mapping on C must be constant.

Corollary 7.11. Any period mapping Φ: C→ D is constant.

Proof. Let t ∈ C be an arbitrary point. For any R > |t|, we have

dD
(
Φ(t),Φ(0)

)
≤ d∆R

(t, 0) = log
R+ |t|
R− |t| .

But the right-hand side goes to zero as R→ +∞, and so Φ(t) = Φ(0). This means
that the period mapping is constant. �
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